Chromosome integrity at a double-strand break requires exonuclease 1 and MRX.
نویسندگان
چکیده
The continuity of duplex DNA is generally considered a prerequisite for chromosome continuity. However, as previously shown in yeast as well as human cells, the introduction of a double-strand break (DSB) does not generate a chromosome break (CRB) in yeast or human cells. The transition from DSB to CRB was found to be under limited control by the tethering function of the RAD50/MRE11/XRS2 (MRX) complex. Using a system for differential fluorescent marking of both sides of an endonuclease-induced DSB in single cells, we found that nearly all DSBs are converted to CRBs in cells lacking both exonuclease 1 (EXO1) activity and MRX complex. Thus, it appears that some feature of exonuclease processing or resection at a DSB is critical for maintaining broken chromosome ends in close proximity. In addition, we discovered a thermal sensitive (cold) component to CRB formation in an MRX mutant that has implications for chromosome end mobility and/or end-processing.
منابع مشابه
Sgs1 Helicase and Two Nucleases Dna2 and Exo1 Resect DNA Double-Strand Break Ends
Formation of single-strand DNA (ssDNA) tails at a double-strand break (DSB) is a key step in homologous recombination and DNA-damage signaling. The enzyme(s) producing ssDNA at DSBs in eukaryotes remain unknown. We monitored 5'-strand resection at inducible DSB ends in yeast and identified proteins required for two stages of resection: initiation and long-range 5'-strand resection. We show that...
متن کاملExonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere
The Saccharomyces cerevisiae Mre11p/Rad50p/Xrs2p (MRX) complex is evolutionarily conserved and functions in DNA repair and at telomeres [1-3]. In vivo, MRX is required for a 5' --> 3' exonuclease activity that mediates DNA recombination at double-strand breaks (DSBs). Paradoxically, abolition of this exonuclease activity in MRX mutants results in shortened telomeric DNA tracts. To further explo...
متن کاملMRX protects fork integrity at protein–DNA barriers, and its absence causes checkpoint activation dependent on chromatin context
To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein-DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for...
متن کاملEffect of deletion and insertion on double-strand-break repair in Saccharomyces cerevisiae.
I investigated double-strand-break repair in Saccharomyces cerevisiae cells by measuring the frequencies and types of integration events at the PET56-HIS3-DED1 chromosomal region associated with the introduction of linearized plasmid DNAs containing homologous sequences. In general, the integration frequencies observed in strains containing a wild-type region, a 1-kilobase (kb) deletion, or a 5...
متن کاملThe Exonuclease Homolog OsRAD1 Promotes Accurate Meiotic Double-Strand Break Repair by Suppressing Nonhomologous End Joining.
During meiosis, programmed double-strand breaks (DSBs) are generated to initiate homologous recombination, which is crucial for faithful chromosome segregation. In yeast, Radiation sensitive1 (RAD1) acts together with Radiation sensitive9 (RAD9) and Hydroxyurea sensitive1 (HUS1) to facilitate meiotic recombination via cell-cycle checkpoint control. However, little is known about the meiotic fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- DNA repair
دوره 10 1 شماره
صفحات -
تاریخ انتشار 2011